“次协调逻辑”(Paraconsistent Logic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。
在任一次协调逻辑系统Cn(1≤n≤w)中,下述经典逻辑的定理或推理模式都不成立:
?(Aù?A)
Aù?A→B
A→(?A→B)
(A??A)→B
(A??A)→?B
A→??A
(?Aù(AúB))→B
(A→B)→(?B→?A)
若以C0为经典逻辑,则系列C0, C1, C2,… Cn,… Cw使得对任正整数i有Ci弱于Ci-1,Cw是这系列中最弱的演算。已经为Cn设计出了合适的语义学,并已经证明Cn相对于此种语义是可靠的和完全的,并且次协调命题逻辑系统Cn还是可判定的。现在,已经有人把次协调逻辑扩展到模态逻辑、时态逻辑、道义逻辑、多值逻辑、集合论等领域的研究中,发展了这些领域内的次协调理论。显然,次协调逻辑将会得到更进一步的发展。[③]
非单调逻辑是关于非单调推理的逻辑,它的研究开始于20世纪80年代。1980年,D·麦克多莫特和J·多伊尔初步尝试着系统发展一种关于非单调推理的逻辑。他们在经典谓词演算中引入一个算子M,表示某种“一致性”断言,并将其看做是模态概念,通过一定程序把模态逻辑系统T、S4和S5翻译成非单调逻辑。B·摩尔的论文《非单调逻辑的语义思考》(1983)据认为在非单调逻辑方面作出了令人注目的贡献。他在“缺省推理”和“自动认知推理”之间做了区分,并把前者看作是在没有任何相反信息和缺少证据的条件下进行推理的过程,这种推理的特征是试探性的:根据新信息,它们很可能会被撤消。自动认知推理则不是这种类型,它是与人们自身的信念或知识相关的推理,可用它模拟一个理想的具有信念的有理性的代理人的推理。对于在计算机和人工智能中获得成功的应用而言,非单调逻辑尚需进一步发展。
2.归纳以及其他不确定性推理
人类智能的本质特征和最高表现是创造。在人类创造的过程中,具有必然性的演绎推理固然起重要作用,但更为重要的是具有某种不确定性的归纳、类比推理以及模糊推理等。因此,计算机要成功地模拟人的智能,真正体现出人的智能品质,就必须对各种具有不确定性的推理模式进行研究。
首先是对归纳推理和归纳逻辑的研究。这里所说的“归纳推理”是广义的,指一切扩展性推理,它们的结论所断定的超出了其前提所断定的范围,因而前提的真无法保证结论的真,整个推理因此缺乏必然性。具体说来,这种意义的“归纳”包括下述内容:简单枚举法;排除归纳法,指这样一些操作:预先通过观察或实验列出被研究现象的可能的原因,然后有选择地安排某些事例或实验,根据某些标准排除不相干假设,最后得到比较可靠的结论;统计概括:从关于有穷数目样本的构成的知识到关于未知总体分布构成的结论的推理;类比论证和假说演绎法,等等。尽管休谟提出著名的“归纳问题”,对归纳推理的合理性和归纳逻辑的可能性提出了深刻的质疑,但我认为,(1)归纳是在茫茫宇宙中生存的人类必须采取也只能采取的认知策略,对于人类来说具有实践的必然性。(2)人类有理由从经验的重复中建立某种确实性和规律性,其依据就是确信宇宙中存在某种类似于自然齐一律和客观因果律之类的东西。这一确信是合理的,而用纯逻辑的理由去怀疑一个关于世界的事实性断言则是不合理的,除非这个断言是逻辑矛盾。(3)人类有可能建立起局部合理的归纳逻辑和归纳方法论。并且,归纳逻辑的这种可能性正在计算机科学和人工智能的研究推动下慢慢地演变成现实。恩格斯早就指出,“社会一旦有技术上的需要,则这种需要比十所大学更能把科学推向前进。”[④] 有人通过指责现有的归纳逻辑不成熟,得出“归纳逻辑不可能”的结论,他们的推理本身与归纳推理一样,不具有演绎的必然性。(4)人类实践的成功在一定程度上证明了相应的经验知识的真理性,也就在一定程度上证明了归纳逻辑和归纳方法论的力量。毋庸否认,归纳逻辑目前还很不成熟。有的学者指出,为了在机器的智能模拟中克服对归纳模拟的困难而有所突破,应该将归纳逻辑等有关的基础理论研究与机器学习、不确定推理和神经网络学习模型与归纳学习中已有的成果结合起来。只有这样,才能在已有的归纳学习成果上,在机器归纳和机器发现上取得新的突破和进展。[⑤] 这是一个极有价值且极富挑战性的课题,无疑在21世纪将得到重视并取得进展。