[关键词] 爱因斯坦;毕达哥拉斯定理;欧几里得;几何原本
2004年6月,联合国第58次会议决定:2005年为世界物理年。用一门科学命名世界年,这是联合国历史上还是第一次,这是为了纪念1905年爱因斯坦奇迹般地发表划时代意义的5篇学术论文100周年,同时也是纪念这位20世纪最伟大的物理学家逝世50周年。
爱因斯坦不是一位数学家,而是一位理论物理学家。他将当时处于创建阶段的张量分析用于广义相对论,不但为这种理论找到了有效的数学工具,并对推动和完善张量分析在数学中的发展起到了重要的作用。此外,爱因斯坦还在爱因斯坦求和约定[1]和爱因斯坦张量[2]等方面对数学作出了直接的贡献。
本文不研究爱因斯坦与张量分析的关系,而研究数学中一条十分重要的定理—毕达哥拉斯定理(以下简称为毕氏定理)与爱因斯坦的关系,这与他在12岁时是否创新地得到了该定理的证明有关。
1 一些重要的说法
1.1 1921年Moszkowski的说法
Moszkowski(1851-1934)是与爱因斯坦早年有密切交往的柏林文艺批评家,他从1919年夏季至1920年秋季曾与爱因斯坦作了一系列的对话,随即出版了有关爱因斯坦第一本传记的英文本[3]和德文本[4],此书英文本于1972年再版,书名改为《与爱因斯坦的对话》[5]。显然,该书初版内容是得到爱因斯坦认可的。其中有爱因斯坦与毕氏定理关系的首次较为详细的报导,Moszkowshi写道[3]:“有一次雅可比叔叔向爱因斯坦讲了毕氏定理的内容,而未讲任何证明。他的侄儿理解所涉及的关系,并感到可基于一种理由而推导出来。……这个小孩在三个星期中用其全部的思维力量去证明这一定理。他专注到三角形的相似性(从直角三角形的一个顶点向斜边作垂线)得到了一个证明。为此,他长时间的激动!这虽然仅涉及到一个非常古老的著名定理,他却经历了发现者首次的快乐。”
1.2 1924年Maja Einstein的说法
爱因斯坦的妹妹Maja Einstein(1818-1951)在1924年2月15日写成了《阿尔伯特•爱因斯坦——为他的生平事略而作》一文,但一直未公开发表。由于此文的重要性,《爱因斯坦全集》的编者于1986年将此文的部分内容载于全集第一卷正文之前,此文涉及到爱因斯坦12岁时证明毕氏定理的内容。
对于爱因斯坦学习几何,Maja 在文中写道[6-7]:“他不是从书中得知它们的证明,而是企图自己来证明它们。”又说:“阿尔伯特总是找到了正确的证明,甚至还发现证明毕达哥拉斯定理的一个崭新的方法。获得这样的结果,这个孩子感到莫大的幸福,这时他自己已经意识到他的才能指点他的道路。”这段话清楚表明作者认为爱因斯坦曾给出毕氏定理一个崭新的证明,而且这段经历对爱因斯坦以后从事科学研究有重大影响。此外,全集的编者还对此事加注说:“根据这篇文章(指爱因斯坦的《自述》)中的叙述和Moszkowski书中第222-223页的内容,就可以重建他的证明。”这说明全集编者认同Maja的说法,并向读者提供了证实这一说法的参考文献。
1.3 1930年Onto Reiser 的说法
Onto Reiser(1889-1964)是Rudolph Kayes 的笔名,他是一位德语专家,1924年与爱因斯坦的继女结婚,1930年发表了《爱因斯坦传》一书[8]。此书曾得到过爱因斯坦充分的认可,他为该书曾写了一段话,其中有一句为:“我感到这本书从头到尾讲的事都是相当确凿的。”[9]
Reiser 对爱因斯坦证明毕氏定理的事写道:“他的叔叔向他讲了毕氏定理,只讲了内容,而未讲证明。这个孩子的雄心大志是不借助现有的最少的几何知识,去发现他自己的证明。奇迹终于发生了……,他独立地成功证明了欧几里得几何的关键定理。……当Spieker的几何书到了他手里时,除了2到3道难题外,他迅速成功地解答了所有的习题。”
1.4 1932年Talmey的说法
Talmey Max(1869-1941)是爱因斯坦10岁到15岁时与之密切相处,并对爱因斯坦给予良好教育的人,1932年发表了[10] ,并在[11] 中有着爱因斯坦少年时学习数学的生动描述。他写道:“我给他Spieker的几何学教科书自学。每周我惯常去他家一次,他总是很高兴给我看他上周解出的新习题。开始时,我帮助他解难题,……,过了不久,几个月,他已经把Spieker整本书都学完了。……不久,他的数学天才飞得那么高,我不再能跟得上了。”
Talmey所述内容中,并未提及爱因斯坦证明毕氏定理一事。
2 爱因斯坦本人的说法
应P.A.Schilpp的请求,爱因斯坦在1946年写了《自述》一文,“向共同奋斗着的人们讲一讲一个人自己努力和探索过的事情”。此文首先发表在[12] 中,中文译文见[13] 。
爱因斯坦在此文中写道:“在12岁时,……有位叔叔曾经把毕达哥拉斯定理告诉了我。经过艰巨的努力以后,我根据三角形相似性成功地‘证明了’这条定理;在这样做的时候,我觉得,直角三角形各个边的关系‘显然’完全决定于它的一个锐角。在我看来,只有在类似方式中不是表现得很‘显然’的东西,才需要证明。”
值得注意的是:爱因斯坦在‘证明了’上面打了引号,这意味了这样的‘证明了’,是有限定意义的。
3 爱因斯坦对质疑的答复
1953年3月14日在爱因斯坦74岁生日宴会之前,举行了一个简短的记者招待会,他收到了一份书面的问题单,其中第一个问题就涉及在他12岁证明毕氏定理的事,爱因斯坦对此作了明确的回答[14] 。
第一个问题是:“据说你在5岁时由于一只指南针,12岁时由于一本欧几里得几何学而受到决定性的影响。这些东西对你一生的工作果真有过影响吗?”
爱因斯坦回答:“我自己是这样想的。我相信这些外界的影响对我的发展确是有重大影响的。但是人们很少洞察到他自己内心所发生的事情。当一只小狗第一次看到指南针时,它可能没有类似的影响,对许多小孩子也是如此。事实上决定一个人的特殊反应的究竟是什么呢?在这个问题上,人们可以设想各种或多或少能够行得通的理论,但是决不会找到真正的答案。”
由此可见,在爱因斯坦逝世前一年,他仍然充分肯定他少年证明毕氏定理之事对他一生重大的影响。
4 爱因斯坦的证明方法
至今未见到爱因斯坦12岁时对毕氏定理证明的详细内容,但是按照上述材料,不难正确地推论出他的方法如下所示。
专注到三角形的相似性,从直角三角形的一个顶点向斜边作垂线,设交点为D(见图1)。两直角三角形的相似,完全取决于它们的一个锐角,如果有一锐角相等,二者相似;否则,不相似。
在图1中,△ABC、△DBC、△DCA彼此都是相似的,因为它们有一锐角是相等的。
△ABC与△DBC因相似,二者的两对应边长之比相等,即
c/a=a/e,ec=a2 (1)
对△ABC与△ACD,同理有
c/b=b/f,fc=b2 (2)
(1)+(2),得到:
ec+fc=(e+f)c=c2=a2+b2 (3)
上式就是毕达哥拉斯定理的内容。