我们可以想象一根直线在平面上无限延伸,我们马上就可以想象到,平面由直线组成,因此,如果这个平面由无数的半开放的无限点所构成的边缘所包围,平面边缘的所有无限远点是一维太极线圆(周长),如果将它们表达在欧氏平面中,这就是射影几何中的“射影平面”。
我们取一个画在欧氏平面上的任意圆面,在这个圆面上,如果我们将圆周“定义”为无限远的边缘——太极圆,这时这个圆面就成了“射影平面”,实际上,这和我们平常看到的地平线和理想化的地平面这样一种经验相同。如果在这个圆面上画一根直径,这根直径的两个端点就是同一个无限远点即每一根直径的两个端点在太极点的意义上自身同一。为了想象这一点,我们将一个球在一个平面上投影,这时球上的赤道被投影成为一根直径,在投影上它有两个端点,而球上的赤道却是自身相连没有端点的。就是说欧氏平面上的圆周被理解为太极线就使这个圆面成为射影平面。
2.太极几何
2.1.太极面
2.1.1.我们想象在我们的前面有一个平面,比如就是地平面,如果它无限延伸出去,按照上述的太极几何原理和太极点的定义,它将在无限的地平线处自身缝合起来,成为二维太极面。
2.1.2.这样的二维太极面是几何学单面的。实际上,普通几何学中的平面也是单面的,欧几里德的定义是:面是只有长度和宽度的那种东西。对平面没有定义厚度就等于没有定义双面性,双面性实质是三维空间的性质,就是说只有在三维空间中,平面才有双面,一个没有两面的单面在普通几何学中是无法理解的,但在现实中却可以是经验地想象的,比如,我们可以设问,当我们所处的地平面在无限远处被太极缝合时,我们是被缝合在其内还是在其外呢?这个问题实际上就是问理想地平面是双面还是单面的问题,在拓扑学意义上,这就是空间的连通性问题。
2.1.3.由于地球是有限的,所以我们很容易理解我们生活在地球表面之上(外)而不是地球表面之内,但对于一个真正无限延伸平面的太极缝合来说,这这个问题是无法回答的,比如天空就是无限的,古人想象天如复盖,如果我问我们是生活在天空之内还是天空之外,这个问题就无法回答了,这似乎超出了人的想象力,但这实际上是一个具有现实意义的大科学问题,因为我们同样可以问:我们是生活在宇宙之内还是宇宙之外?
2.1.4.我们可以想象在一个无限大的黑色以太液体中有一个很大的气体泡泡,我们生活在其中,现在要问我们是生活在液体之内还是液体之外呢?这不是一个所谓的观察角度不同的问题,在这种情况下,我们没有观点选出择的自由,只能回答是或不是,如果说我们生活在液体之内,但气泡是对液体的排除,所以我们自活在液体之外;但如果我们说我们生活在液体之外,但无限的液体包围着所有的世界,所以我们在液体之内。
2.1.5.这个问题是有物理学意义的,这就是著名的牛顿旋转难题。让一个水桶旋转起来,里面的水也跟随着旋转,我们让水桶停下,水仍然在桶内转动,一般我们都认为水是相对桶或附近其它静止参照物作旋转运动的,现在我们合理地想象桶和附近所有的静止参系不存在,我们仍能由于水面是锅状凹下去的而知道水在旋转,因为地球引力存在,但是如果这个参考系也被撤去,我们能够知道水在旋转吗?我们知道宇宙中所有的天体都在旋转,这是由于它们互为参照系,但是如果整个宇宙都要在旋转,我们用什么参照系来发现这种转动?有那样大的静止的水桶装着整个旋转的宇宙吗?俗话说“天外有”天“,但这个”天外“与”天“能区别吗?
2.1.6.最简单的问题往往是最困难的问题,像这样连孩子们都能提出的问题足以难倒最智慧的学者,这样的问题是可以想象,可以询问,但不能回答,这就是悖论。我们很难承认我们这个宇宙是悖论,因为我们的世界好好的存在着。
2.2.空间的意义
2.2.1.悖论的解决方法就是提高层次,在高一维空间中考察低维问题,这是人类的想象力的最伟大之处。比如,我们想象地球仪内外两面各有一只平面型蚂蚁爬着,在这种二维世界中,它们都不知道对方的存在,也无法知道世界之“外”、之“内”是什么意思,拓扑学的方法是在球面上开一个洞口,把三维引入二维,当然对于三维世界来说这是通常的,所有开口容器如啤酒瓶就是这样,但对于二维动物来说,这似乎不可能,它们无法在自己的二维世界中开一个三维洞口,正如我们不能在我们现实的三维世界中开一个四维洞口一样,但是太极几何提供了这样一种理论,即无限远处的太极缝合,这就是以思想方式实现的在我们自身维度上的开口,这正是太极几何的意义,当然,如果在现实世界中发生了太极撕裂,世界就在自身被翻转了。
2.2.2.拓扑学为我们提供了在三维世界中表达二维无限面的模型,这是我们在莫比乌斯带和克莱因瓶中所看到情形(参见“中国思想和柏拉图哲学”中的附图),这与射影几何的情况相似。但是我们往往很难领会莫比乌斯带和克莱因瓶这种简单的模型所表达的空间翻转的意义,因为我们通常的直觉想象力很难构造四维世界的直观图像,但太极几何提供了这样的理论方法,使我们能够在空间模型的意义上理解莫比乌斯带和克莱因瓶。
2.3.太极两仪
2.3.1.实际上,最基本的几何元素在自身的意义都是“单”性的:点没有大小,直线没有宽度,面没有厚度,这种“单性”在几何学中是公设,几何学本身是无法分析的,通常我们都知道直线没有宽度却有左右,平面没有厚度却有阴阳,这在传统的学术理论中中是无法说明的,而从太极几何的观点看就是完全可以理解的,在太极几何中,一个点即使没有大小也具有两半端点的意义,这里的关键在于通常的“半”、“双”、“两”等等的意义都是分裂的对立,与几何单性不相容。
2.3.2.由于太极几何定义了几何元素自身的内禀无限性,一个没有大小的常点与直线上两半端点本质相同,同理,一个没有厚度的面具有阴阳两面,这不是点自身的分裂对立,而是自身的超越的同一,这种自身的相对性就是太极“两仪”。
2.3.3.中文中的“极”具有端、顶、终等含义,在太极几何的意义上就是几何单性,“太”就是无限,因此“太极”在太极几何中的解释就是几何单性的内在无限——内禀无限性,这是自身的相对性内涵,所以也是“无极”,“太极无极”以中文语境表达了纯粹几何中真正的自身无限性观念。
“无极”不是对太极的否定,而是自身无限生成,即量子理论式的无限内禀表征,两仪中的“两”与我们对“半”的量子理论式的理解相同(1.2.3.),太极两仪就是无限与有限的生成关系。在对“无”、“无限”的阐释上,传统西文语境与中文语境有很大的区别,但我们可以在现代学术基础理论中的看到与中文语境的共同性。
太极生两仪是易经演绎的开始,但这个过程一直缺泛直观的表达形式,虽然传说和历史中早就有了太极图式,但由于需要长期的修炼式才能有所领悟而使其具有一种神秘性,太极几何就提供了一种从现代学术方法上的表达方法,而且这不仅是对我们自己传统文化的科学阐释,也是对西方学术和西方文化的一种再认识。
2.3.4.太极无限生成就意味世界上永远不会有自身唯一存在的单性事物,因此几何中没有单独的半端点、半极点,正如物理中没有南北单(磁)极一样。同理,如果一个个太极面的所有太极点实现为半端点,这就是在同一个太极面上实现了的两面,这就意味着在自身上实现了拓扑连通,为了一般读者的理解方便,我们可以仿照物理学中的方法,认为一个点是自身两半点之间有“虚”线相连的,“无限”也就有了“虚”的物理意义,物理学的思想图像虽然有些勉强,但确实表达了点的是有内在本质的这个空间物理性质。
如果和射影几何与拓扑几何的意义相比较,可以说,太极几何就是在三维现实世界中表现和表达的三维世界自身的“超空间理论”。