用户名 密码 看不清?点击更换 看不清?点击更换 忘记密码 注册   加入收藏  
 
 
科学哲学对于数学哲学现代发展的重要影响——兼论数学哲学中的革
来源:  作者:郑毓信  点击:次  时间:2002-02-09 00:00于哲学网发表

   3.对于数学史的强调
如众所知,对于科学史的突出强调也是科学哲学现代研究的一个重要特征。正如克伦瓦(M.Crowe)所指出的:“在库恩以前, 科学哲学长期为逻辑实证主义所支配,后者认为科学史是与他们的研究毫不相关的;但是,这种形势现在已经有了改变……科学哲学家们现已认识到了历史研究的重要性。”这就是说,“如果没有给予科学史应有的重视,科学性质的分析就是不可能的。”科学哲学的上述变化对在新方向上工作的数学哲学家也产生了极大的影响。例如,在以上所提及的各篇论文和著作中,历史案例的分析都占据了十分重要的位置。可以说历史方法事实上已成为数学哲学现代研究的基本方法之一。
作为一种自觉的努力,我们在此还可特别提及以下的四部论文集:(1 )由艾斯帕瑞和基切尔所编辑的History  and  Philsophy  ofModern Mathematics(1988);(2 )由J. Echeverria 等人所编辑的The Space of Mathematics: Philosophical, Epistemological andHistorical  Exploration (1992 );  (3 )由吉利斯所编辑的Revolution in Mathematics (1992 ); (4 )由H. Breger 和E.Grosholz编辑的The Growth of Mathematical Knowledge (即将出版)。
这些编辑者的一个共同特点是,他们不仅认为数学方法论的任一理论都应用历史的案例加以检验,而且更大力提倡数学史家与数学哲学家的密切合作, 并认为双方都可以从这种合作中得益匪浅。 例如, Breger和Grosholz在他们的序言中这样写道:“这一论文集源自编辑者的这样一个信念,即数学哲学的重要论题可以由哲学家与历史学家的有组织对话得到启示。……我们希望历史的材料能在数学哲学家那里获得更为深入和系统的应用;同样地,我们也希望哲学家由历史所激发的思考能给历史学家提供新的问题和思想。”显然,这种态度与传统的把数学哲学与数学史绝对地分割开来的作法是截然相反的。
最后,我们在此还可提及所谓的“奠基于数学史之上的数学哲学”。具体地说,相关的数学哲学家在此所希望的就是能发展出关于数学知识的这样一种理论,它能正确地反映数学的历史发展,即“现代的数学知识是由初始的状态经由一系列的合理转变得以形成的”(基切尔语)。显然,按照这样的观点,数学史对于数学哲学的重要性就得到了进一步的强化:正是前者为数学哲学的研究提供了基本的素材和最终的检验。这也就是说,“数学史对于数学哲学来说,不仅不是无关的,并事实上占有核心的地位。”
  4.实际数学工作者的“活的哲学”
应当指出,对于数学史的高度重视不仅直接涉及到了数学方法论的研究,而且也标志着数学哲学研究立场的重要转变。在新方向上工作的数学哲学家们几乎一致地认为,实际的数学活动应当成为数学哲学理论研究的出发点和最终依据。“哲学没有任何理由可以继续无视实际的数学活动。事实上,正是这种实践应当为数学哲学提供问题及其解决所需要的素材。”
当然,上述的转变直接反映了实际数学工作者的心声。这也就如麦克莱恩所指出的:“数学哲学应当建立在对于这一领域(按指数学)中所实际发生的一切的仔细观察之上。”
最后,值得指出的是,艾斯帕瑞和基切尔并曾从这样的角度对数学方法论研究的意义进行了分析。他们这样写道:“如果我们具有了这样的原则,历史学家就可以此为依据对实际历史与理想状况之间的差距作出研究,从而发现这样的有趣情况,在其间由于某些外部力量造成了对于方法论的偏离。另外,数学家们则可能会发现以下的研究具有一定的启示意义,即他们所选择的研究领域是如何由过去的数学演变而生成的,某些方法论的原则又如何在核心概念的更新中始终发挥了特别重要的作用。并非言过其实的是,这些答案……—还可能对数学家关于各种研究途径合理性及某些观念意义的争论起到一定的启发作用。”显然,这一认识与现代科学哲学中对于方法论的强调是完全一致的。
    三、数学哲学的革命
从整体上说,与先前的基础主义数学哲学相比,新方向上的研究无论就基本的数学观,或是就研究问题、研究方法和基本的研究立场而言,都已发生了十分重要的变化。我们就可以说,数学哲学已经历了一场深刻的革命。
  1.研究立场的转移,即由与实际数学活动的严重分离转移到了与它的密切结合。
由于深深地沉溺于对已有的数学理论和方法可靠性的疑虑或不安,因此,逻辑主义等学派在基础研究中普遍地采取了“批判和改造”的立场,即都认为应当对已有的数学理论和方法进行严格的批判或审查,并通过改造或重建以彻底解决数学的可靠性问题。从而,基础主义的数学哲学主要地就是一种规范性的研究,而也正因为此,基础研究在整体上就暴露出了严重脱离实际数学活动的弊病。
与此相对照,在新方向上工作的数学哲学家普遍采取了相反的立场,即是认为数学哲学应当成为实际数学工作者的“活的哲学”,也即应当“真实地反映当我们使用、讲授、发现或发明数学时所作的事”(赫斯语)。显然,基本立场的上述转移事实上也就意味着数学哲学性质的重要改变:这已不再是实际数学工作者所必须遵循的某些先验的、绝对的教条。
  2.对于数学史的高度重视。
由于逻辑主义等学派所关注的主要是数学的逻辑重建,因此,在这些学派看来,数学的真实历史就不具有任何的重要性,或者说即是与数学的哲学分析完全不相干的,而数学哲学家所唯一应当重视的则就是逻辑分析的方法。
与基础主义者的上述作法相对立,在新方向上工作的数学哲学家则普遍地对数学史给予了高度的重视。例如,这就正如Echeverria等人所指出的:“对于数学活动的历史和社会层面的关注清楚地表明了‘新’的数学哲学与传统的新弗雷格主义倾向的区别,而后者在本世纪前半叶曾在这一学科中占据支配的地位。”显然,这事实上也就可以被看成上述的基本立场的一个直接表现。
更为一般地说,人们并逐步确立了这样的认识:“没有数学史的数学哲学是空洞的;没有数学哲学的数学史是盲目的。”(拉卡托斯语)这不仅标志着方法论的重要变革,而且也为深入开展数学哲学(和数学史)的研究指明了努力的方向。
  3.研究问题的转移。
由于对已有的数学理论和方法可靠性的极大忧虑构成了逻辑主义等学派的基础研究工作的共同出发点,因此,基础主义的数学哲学主要地就是围绕所谓的“数学基础问题”展开的。这也就是指:如何为数学奠定可靠的基础,从而彻底地解决数学的可靠性问题?
与此相对照,现代的数学哲学家一般不再关心数学的可靠性问题,而这事实上也就是数学工作者实际态度的直接反映。这就正如斯坦纳(M.Steiner)等人所指出的, 这是数学哲学研究的一个明显和无可辩驳的出发点,即人们具有一定的数学知识,这些数学知识并已获得了证实,从而就是可靠的。
对于力图为实际数学工作者建立“活的哲学”的数学哲学家来说,数学哲学研究的核心问题无疑就在于:如何对数学(活动)作出合理的解释?托玛兹克说:“数学哲学始于这样的思考,即是如何为数学提供一般的解释,也即提供一种能揭示数学本质特性并对人们如何能够从事数学活动作出解释的综合观点。”显然,这也就表明了,方法论的问题何以会在数学哲学的现代研究中占据特别重要的位置。
  4.动态的、经验和拟经验的数学观对于静态的、绝对主义的数学观的取代。
尽管逻辑主义等学派对什么是数学的最终基础有着不同的看法,但是,从总体上说,他们所体现的又都可以说是一种静态的、绝对主义的数学观,因为,他们都希望能通过自己的工作为数学奠定一个“永恒的、可靠的基础”,这样,数学的进一步发展也就可以被看成无可怀疑的真理在数量上的单纯积累。
如果说静态的、绝对主义的数学观在基础主义的数学哲学中占据了主导的地位,那么,由于把着眼点转移到了实际的数学活动,人们现已不再把数学的发展看成是无可怀疑的真理在数量上的简单积累;与此相反,作为人类的一种创造性活动,数学发展显然是一个包含有猜测、错误和尝试、证明和反驳、检验与改进的复杂过程,并依赖于个体与群体的共同努力。从而,这种动态的、经验和拟经验的数学观就已逐渐取代传统的静态的和绝对主义的数学观在这一领域中占据了主导的地位。
综上可见,相对于基础主义而言,现代的数学哲学无论就研究问题、研究方法,或是就研究的基本立场和主要观念而言,都已发生了质的变化。因而,我们可以明确地断言:在数学哲学的现代发展中已经发生了革命性的变化。由于所有这些变化都与来自科学哲学的影响有着十分紧密的联系,因此,这也就最为清楚地表明了这种影响对于数学哲学现代发展的特殊重要性。

【参考文献】
1.M.Hallett,"Towards a Theory of Mathematical ResearchProgrammes",in The British Journal for Philosophy of Science,30[1979],p.2
2. H. Mehrtens, "T. Kuhn's Theories and Mathematics: aDiscussion paper on the ‘New Historiography’of Mathematics",in Historia Mathematica,3[1976],p.301,305,312
3.P. Kitcher, "Mathematical Naturalism", in History andPhilsophy of Modern Mathematics,ed.by W.Aspray & P. Kitcher,University of Minnesota Press,1988,p.299,315
4.P.Kitcher,The Nature of Mathematical Knowledge, OxfordUniver.Press,1983,p.163
5.J.Echeverria & A.Ibarra & T.Mormann(ed.), The Space ofMathematics: Philosophical Epistemological  and  HistoricalExploration,Walter de Gruyter,1992,p.ⅩⅤ,ⅩⅢ,ⅩⅠ


 



哲学网编辑部 未经授权禁止复制或建立镜像
地址:上海市虹梅南路5800号2座416室 邮编:200241
ICP证号:晋ICP备 05006844号