用户名 密码 看不清?点击更换 看不清?点击更换 忘记密码 注册   加入收藏  
 
 
科学中的计划和自由(1)-科技哲学
来源:  作者:樊春良  点击:次  时间:2002-01-28 00:00于哲学网发表

 “这一历史,包括微波激射器和它的光学版本——激光的随后影响,导向重要的一点结论。这一点结论必须放在任何长期的科学或技术计划的最前面。一些历史学家,回头看我们那些日子,断定我们在某些方面是被军方指挥、管理、操纵、或调遣,好像海军已经很明确地期望在毫米微波上的应用,甚至期待象微波激射器和激光这样的东西。负责预算的政治家和计划者,也普遍相信资助机构必须把计划集中在特殊有用的方向上。从我们自身经验的有利地位,我们可以说,海军对于所有象微波激射器和激光这样的东西并没有特殊的期望。出于这个领域新的东西都是靠着我们。军方对我的微波激射器工作似乎并不感兴趣,直到后来得到证明的时候。关键的是,我在我认为有趣的和重要的方面自由地开展工作。当人们后来回顾时,原因和效果有时掉转过来。工业界和军方是重要的慷慨支持的源泉,但是,通过我的整个职业生涯的经验——这也是许多其他科学家共有的——我必须说服其他人,包括资助者,让我跟从自己的本能和兴趣。这常常会有收益。”
2.2 固体物理学研究和晶体管的发明
晶体管是贝尔实验室的科学家于1948年发明的。晶体管可以说是研究计划成功的一个典型实例。根据在战争期间参加军事技术研制任务的经验,W.Shockley看到了固体物理学的前景。他认为贝尔实验室应该加强,坚信这会给通讯技术带来新的发展。他的设想得到研究部主任M.J.Kelly的大力支持。1946年贝尔实验室开始支持和组织半导体研究。
虽然Kelly和 Shockley看到了固体物理研究的应用前景,但是研究的目标并不是以发明特殊的实用技术为出发点,而是对固体(特别是半导体)物理学前沿的深入理解,认为在这个领域取得的进展可能会带来广泛的应用前景,对一系列通讯技术的改进是很有成效的,例如,放大器、检测器和热电装置。也就是说,晶体管的发明并不是项目设定好的。
半导体研究项目一开始就充满了不确定性。能否实现放大作用,如果能、怎样实现,都是不确定的。在最初的几年,研究只是积累一般的有关放大器的知识。Shockley发展了A.H.Wison在1932年的工作,预言了场致效应的存在,提出对半导体薄膜施加电场以控制电流。但是,早期的从锗的实验没有观测到这种效应。J.Bardeen在解释这种现象中提出了表面态存在性质,指出克服表面束缚,就可以使电流放大。他和W. Brattain通过检验表面态理论的实验,发现了使半导体传导率发生变化的新方法,即在适当的结点导流入电流。进一步解释这些实验,发现了最小载流子的重要性,Shockley设计出结接触晶体管。E.Braun和S.Macdonald在研究半导体电子学的名著《微型革命》一书中指出:晶体管发明有两个突出的特征,一是理论家Bardeen和实验家Brattain的成功合作。另外一个是创造场致效应放大器的失败和放弃最初计划的结果。
2.3 小 结
微波辐射以及激光可以视为自由探索的结果。工业界没有看到产生于其实验室的新兴的学科——分子光谱学的应用前景,放弃了对它的支持,而亲身工作在第一线的科学家看到了新学科的前景,坚持按学科的发展路线持续探索,意外地发现了微波激射器,随后带来了激光的发明。晶体管的发明被视为研究计划的结果。贝尔实验室的Kelly和 Shockley ,的确预见到固体物理学的重要性----虽然最初没有预见最终的具体的结果,鼓励和组织物理学家探索着这个领域。尽管微波激射器和晶体管从研究目标到组织过程有着不同特点,但是两者却都相当的一致性。
从研究的预见性和目标来 两者的研究都不是局限在具体的技术目标上,而是获取自然现象的新知识和新信息。Townes看到了分子光谱学的前景,但是并没有想到微波激射器和激光这样的技术。贝尔实验室的研究目标是对固体(特别是半导体)物理学前沿的深入理解,相信在这个领域中新取得的进展可能会带来广泛的应用前景。最初并没有预测到晶体管这样的放大器,而最后发明的晶体管,也不是最初设想的那种。
从研究过程来看,两者都体现出科学研究的探索性和不确定性特点。微波激射器的发明过程,生动地体现了研究者个人在科学研究道路上按自己的想法探索的历程。由一个小组开展的半导体研究工作,充分体现出科学研究的探索性本性。不仅最初没人能预测出结果,而且没人能预测到理论和实践的进展。它并不是象事后所说的从几个研究途径中选择了一个好的途径,而是随着研究的进行,不断变化思路,不确定性慢慢排除,技术路线渐渐明确。这靠的是研究小组中科学家之间有效的接触,通过信息交流,互相深入了解对方的工作;而这又靠的是科学自由研究的传统,让科学家自己去把握、选择信息,按自己的洞察向有前景的地方前进。
从基础研究如何带来应用的角度看,微波激射器和晶体管的发明都有着潜在的技术应用背景。Towen指出,正是战争期间的雷达研究,通过设置科学问题,通过提供战争期间剩余的仪器做实验以及培训物理学家掌握产生无线电和微波的技术,引发了战后分子光谱学研究的兴起。而贝尔实验室半导体项目的设立,则和二战期间真空管无法满足高频探测的难题和晶体探测器重新受到重视的技术需求有着密切的联系。同时,在研究过程中,科学和应用双方想法的交流和汇集对技术的发明起着关键作用。Townes能够发明微波激射器和激光,得益于他工程背景和科学背景的结合。而晶体管的发明,则与贝尔实验室科学家的对实际仪器感兴趣的“仪器头脑”(device-minded)以及科学家与工程师在研究过程的紧密合作是分不开的。
概括地说,计划和自由是从资助者水平上区分的,从研究者及研究过程来看,自由探索则是科学研究的基本特征。科学研究计划决定的是在广泛应用背景之下的可能会取得回报的研究方向,具体的结果如何,还得靠科学家自己自由地探索。

3.计划和自由的关系

自由探索是科学研究的灵魂,但是科学研究并不是发生在纯粹的象牙塔中。科学研究的实际环境对研究的方向和问题等起着反馈作用。从现代科学的发展来看,大多数科学的发展都有着直接和间接的应用背景,科学与技术也有着多种多样的联系的渠道。回过头来看,Polanyi 的强调科学的自治和Bernal强调社会需求的驱动是简单的二分法。计划和自由之间并不是截然对立的。正如H.Brooks指出的:“科学计划的真正问题是怎样在科学内部自治和社会对科学需求之间做最好的调整”。在短期内,可能会相互冲突,在长期内,可以达到相互支持,尽管相互支持和冲突的程度一直存在着争论。因此,根本的问题是认清计划的根据、目标和范围,保持计划和自由之间的协调与平衡。
3.1计划的前提
计划的前提是可以预见(至少可以预先评估)研究的成果对社会经济的具体贡献。虽然从总体上说,科学研究具有不可预见性,但是在某些方面可以预见的。(1)可以预见对相关技术发展的可能影响。科学和技术存在着双向的相互联系和作用。对于科学与技术的关系,普遍的观点认为科学的目标不是在于解决实际问题,而是对自然规律的认识,但是这种新的认识可能带来技术的突破,即使它的目的本身不是这样。科学史上的经典例证是麦克斯韦对电磁波的研究,导致无线电的发现。但是,科学和技术的关系还有着相反方向的联系:技术塑造科学的发展。新技术的产生,其性质常常并没有得到很好的理解,对其应用范围的认识也是有限的。围绕着新技术的产生,就会带来相关的科学研究的兴起。金属学的产生是为了更好地理解决定钢性质的要素,计算机科学是随着现代计算机的出现而成为一个学科领域的。激光的发明,不仅促进光学的发展(之前光学还是一个相对小的学科),也带动了固体物理学的研究,使原子光谱学和气体放电物理学得到复兴。概言之,新技术的改进和发展,为相关科学研究的发展提供的强大的动力和大量的机会。因此,可以预测,在这些与技术发展密切相关科学领域(例如,微电子、材料和半导体等)的研究将会得到很高的潜在回报。虽然具体结果不可预测,但是可以预见总体方向和可能的应用范围。(2)可以预测一个领域的进展对另外一个领域的影响。 这种观点反映科学发展呈现出的学科发展之间相互影响和作用的结构性特点。
3.2 计划的目标
科学研究的目标是获得新的知识和新的信息。不论是从科学知识的特点(科学知识是中间产品,不能直接应用),还是从科学系统运行的报酬机制(承认新知识内在的科学价值,而不是应用价值)来看,把科学目标限定在具体的实用结果或实用路线上,注定是要失败的。因此,按社会经济需求制定的科学计划的目标仍是对某一研究领域新知识的理解,而不是针对特定的应用,但是要考虑到可能的进展所带来的潜在应用。因此,要从内在的标准和可能的贡献两方面把握计划的目标。
3.3 计划的制度安排
按社会经济目标计划科学,基本的特征是结合科学机会和潜在的需求,判断的标准就不能仅仅根据科学上的选择标准,还要有社会和经济上的标准。在制定计划的过程中,需要以各种方式结合和平衡“自上而下”和“自下而上”两种选择机制以及专家和潜在用户双方的参与。
所谓“自上而下”,是由政府有关机构或资助部门,根据国家需要,提出计划领域,由高层组织的专家决定研究议程,并提出指导路线,项目执行者选择的余地很少;或者资助提出一般的方向和项目要求,由研究者根据计划方向提出项目建议。“自下而上”,是指建议完全是由底层科学家提出,不受需求导向的限制,但是在评价和选择的过程中,可以吸收需求方的观点。
如果运用科学为社会服务的过程可以看作最大程度地把科学机会和社会需要联系在一起,选择评价过程必须适当地编入专家和潜在用户双方的参与。专家一般来说有能力评估科学进步的机会,而潜在用户的代表可以更好地确认社会需求。机会和需要的最大平衡只能通过包括两者在内的深入的相互接触和相互教育过程中实现。目前许多国家普遍采用的Foresight实践主要功能之一就在于加强双方的互动。
3. 4计划和自由之间的关系
我们可以看出某些领域是有用的,但是我们不能预测某些领域是无用的。因此,计划和自由的关系的核心是促进整个研究体系的协调发展,保持有目标的计划和自由探索研究之间的平衡,有指导性的研究或按国家目标支持的研究与研究者个人按学科发展提出研究之间的平衡。其中重要的问题,应该保持相当的部分资源支持以学科内部逻辑驱动的研究,这是国家研究体系健康发展的保证。
计划和自由之间并没有截然的冲突。自由探索的研究可以转化为计划的研究。激光的历史表明,当Townes早期在分子光谱学,是按照学科理解驱动的自由探索研究,几乎没有人看出应用的结果。但是,当一旦微波激射器得到证明,即使量子电子学仍然处于幼年期,但是资助者已清楚认识到他们应该对增加量子电子学的资助,因为将会对军事应用技术有真正的价值。因此,从自由探索研究的进展中提升出计划的研究是一项重要的工作。
虽然在资助者看来在微波激射器发明前后,研究是在不同的层次上,但是,对于研究者来说,每天的工作和动机没有变,仍然是追求基本概念的理解。因此,创造良好的机制 ,保持科学研究活跃的探索精神始终是重要的。
3.5计划的局限
从社会经济发展角度计划科学的发展,是一个不断探索的学习过程。计划目标的实现取决于多种因素。计划本身并不能消除科学研究所固有的不确定性。由于计划者面临着预算的压力,计划的指向常常是可以证明的、看得见的发展。因此,会有着牺牲将来,换取眼前收益的危险。同样,过分地强调实用,可能会限制在某一特定的路线而放弃其他有前景的发展方向。

参考文献
1.E.Braun and S. Macdonald.. Revolution in miniature : the history and impact of semiconductor electronics re-explored in an updated and revised second edition Cambridge University 1978,
2.Harvey Brooks, The Government of Science ,The MIT Press 1968
3.Harvey Brooks,“The Evolution of U.S.Science Policy ”, in Technology ,R&D, and the economy (edited by Bruce L.R.Smith and Claude Earfield ), The Brookings Institution and American Enterprise institute, Wastington, D.C.1996 .
4.Vannevar Bush,Science: The Endless Frontier Reprint. National Science Foundation ,1960
5.Committee on Sicence ,Space ,and Technology ,U.S. House of Representatives , The Future of the National Science Foundation, in AAAA Science and Technology Policy Yearbook (edited by Abert H. Teich , Stephen D.Nelson and Celia McEnaney ), American Association for the Advancement of Sicence ,1994
6.Susan E.Cozzens, “Linking Research to National Goals: Recent Discussion in the United States”, in Using Basic Research : National Policies for Linking Basic Research with Socio-economic Objectives in the USA,UK,The Netherlands, Germany and France . An Occasional Paper of the Center for Research Policy, University of Wollongong , March ,1995,
7.Michael Polanyi, “The Republic of Science: Its Political and Economic Theory”,in Criteria for Scientific Development: Public Policy and National Goals (Edited by Edward Shills) ,The M.I.T. Press 1968
8.R.R.Relson, “The Link between Science and Invention:The Case of the Transistor” in R.R.Relson, The Sources of Economic Growth. Harvard University Press ,1996
9.C.H. Townes, How the laser happened ----Adventures of a scientist, Oxford University Press ,1999
10.C. H. Townes,‘Quantum Mechanics and Surprise in Development of technology’,Science, Vol.159, no.3,816,( February 16,1968 )。
11. C.H.Townes, ‘Ideas and Stumbling Blocks in Quantum Electronics’, IEEE Journal of Quantum Electronics, Vol.QE-20, No.6, June 1984,p547

 



哲学网编辑部 未经授权禁止复制或建立镜像
地址:上海市虹梅南路5800号2座416室 邮编:200241
ICP证号:晋ICP备 05006844号