三、构造性数学的意义及其它
在对构造性数学的意义作出评述之前,有必要先弄清楚以下两个问题:1.构造性数学产生的原因是什么?2.构造性数学所要解决的问题和所要达到的目的是什么?
在经典数学如此成功的情况下,为什么还会出现构造性数学?构造性数学产生的原因是什么?这确实是对构造性数学进行哲学研究所必须回答的一个问题。我们认为,原因主要有以下四个方面:一、为了解决由于集合悖论的出现而引发的第三次数学危机。这是布劳威尔直觉主义数学产生的直接原因。对此,大家已比较熟悉,无须多言。然而这只是一个表层的原因,事实上还有以下更深刻的哲学原因。二、为了解决数学概念和方法的可靠性问题。由于集合悖论的出现,使得直觉主义者的注意力一下子集中到什么是可靠的或可信的数学这个问题上。他们认为“存在必须被构造”。因此,只有经过构造性检验的数学才是可靠的。这样一种认识论主张,是构造性数学产生的根本原因。三、纯存在性证明的局限性是构造性数学、尤其是后期构造性数学产生的重要原因。大家知道,纯存在性证明只能让人知道某个方程的根是存在的,但如何求解以至能不能求出这个根均是未知的。构造性数学就是针对纯存在性证明的这个缺陷,提出要证明一个方程的根是存在的,就必须给出求解它的有效方法。四、从构造性数学的角度看经典数学,会产生许多新的见解、新的方法,这不仅可以获得对数学更深刻的认识,而且可以促进两类数学的共同发展,这是后期构造性数学产生的又一原因。以上这些原因概括起来也就是两点:一、经典数学本身的不足;二、“存在必须被构造”的认识论信念。我们认为,正是这两个根本原因,引发了在本世纪产生的构造性数学。
从对构造性数学产生原因的以上认识,不难看到,早期构造性数学所要解决的就是数学基础问题,所要达到的目的就是确立数学的可靠性。后期构造性数学的目的没有这么强,它们不再去解决数学的基础问题,而只是用构造性方法来研究数学,建立一门与经典数学平行的构造性数学。在数学可靠性问题上,尽管后期构造主义者并不完全赞同布劳威尔的哲学主张,尤其是“原始直觉”观念,但他们还是吸取了“存在必须被构造”的可靠性观念。因此,确立数学的可靠性依然是后期构造性数学的目的之一。那么构造性数学是不是解决了它想要解决的问题呢?通过对这个问题的回答,可以看到构造性数学的重大意义和特殊价值。我们先来看看早期构造性数学是不是解决了数学的基础问题。或许有人会对此问题的提出感到奇怪,不是早就说直觉主义同逻辑主义和形式主义一样都已失败了吗?其实问题并非如此简单。尽管在人们为数学大厦寻找基础的一个世纪以来,直觉主义已遭到世界数学界多数人的反对,但它的“失败”不同于与其齐名的逻辑主义、形式主义的失败。后两者的失败是逻辑地注定了的失败,而直觉主义的“失败”仅仅是因为其“过于谨慎而一时”地拒斥了许多被认为很有意义的经典数学,它在逻辑上并没有被宣告失败。现在完全追随布劳威尔的人几乎没有了,但新的构造性数学的发展正方兴未艾。如果这类构造性数学能够取得全面的突破性的大进展,谁又能保证直觉主义数学不会“卷土重来”?事实上,相信构造性数学可能会获得成功的人是始终存在的,且不说构造主义者本身,非构造主义者,如克林也相信:直觉主义地重建经典数学的可能性还是存在的(〔7〕第55,551页)。由此我们认为,构造性数学依然是重建数学基础的一个可能的途径。那种认为直觉主义计划已彻底破产的认识是过于武断的。
后期构造主义者试图建立一门与经典数学平行的构造性数学,我们认为这一计划正在实现的过程中,近来构造性数学成果的不断涌现就是证明。构造性数学产生的意义,不仅在于出现了一门新的理论、开创了一种新的研究方向,并获得了许多新颖、深刻的成果,同时也在于构造性的成果更便于应用。提供解法毕竟比单纯的存在性证明要有意义得多。由此可以说,构造性数学弥补了经典数学的不少缺陷。联系到计算机科学的发展,这种构造性数学的研究就更有其深远意义了。无怪胡世华教授说:“在非构造性数学的研究中,构造性成分越多的部分往往对自身的发展也越有意义”。(〔8〕第268页)
进一步,构造性数学是否达到了它最初的确立数学可靠性的根本目的呢?由于数学的可靠性问题已远远不是一个单纯的数学技术问题,更主要的是一个哲学问题,因此对这个问题的回答不可能有一个终极答案,对构造主义者的回答人们也会仁者见仁,智者见智。故这里我们只是给出自己对这一问题的一些看法。我们认为,在哲学上,构造性数学的产生提出了一个新的“可靠性”观念。直觉主义者认为,一切非构造的存在,都是“超出一切人类的真实可行的‘绝对’,”正是因为相信了这样一种“绝对”,经典数学才“远远地不再是有真实意义的陈述句以及不再是建基于明证之上的真理了。”(〔7〕第50页)为此,直觉主义者强调:存在必须是被构造。认为只有一步一步(有限的)构造出来的东西才是真实的、有意义的、可靠的。他们把经典数学中的“纯存在”视为一种无异于形而上学的东西。黑丁就曾明确指出:“如果‘存在’不是意味着‘被构造’,那就一定包含某种形而上学的意义。”(〔9〕第241页)在黑丁看来,对这种具有形而上意义的存在去讨论,或判定它是否可以接受,这不是数学的任务,认为应该“把数学当作某种比形而上学简单得多、直接得多的东西来研究”。为此,直觉主义才突出地强调应从非构造性向构造性化归。我们认为,这是在从数学认识论上提出了一种新的可靠性标准或观念。这种标准或观念从实用或操作的意义上讲,是颇具合理性的,是应该得到采纳的,它对“信息时代的数学”(胡世华语)的发展是很有意义的。当然,这也并不妨在经典数学中人们有时(即不得已时)可以采用更灵活的可靠性标准。但我们认为,可构造性是一个更可靠的可靠性标准,应该成为数学家和哲学家评判数学可靠性的第一标准或最高标准。至于第二、第三等更灵活、更弱的标准,不同的数学家和哲学家可能会有不同的选择。那么何以见得可构造性就是更强的可靠性标准呢?构造性数学就真的比经典数学更为可靠、更具可接受性吗?我们认为,答案应该是肯定的。道理很简单,就是因为构造性数学的原则远较非构造性数学严格,构造性数学成立的每一定理对于非构造性数学也成立;反之,非构造性数学中成立的定理却不一定在构造性数学中成立。因此,构造性数学实际上成了非构造性数学的一个真子集。另外,从逻辑基础的角度讲,直觉主义逻辑的公理和定理在经典逻辑中都成立,反之却不然。因此,直觉主义逻辑是经典逻辑的一个真部分。我们认为,这些理由完全可以表明,以构造性为可靠性标准而建立的定理比经典数学中的定理更可靠。
我国数学哲学界对构造性数学及其哲学主张评价普遍较低,其原由不外乎这么几点:1.直觉主义数学排斥了一大部分具有应用价值的经典数学。2.排斥了实无穷和经典逻辑。3.与经典数学相比,构造性数学显得繁琐和复杂,对经典数学的构造性改造极为缓慢,难以成功(甚至认为是不可能的)。我们认为,这些并不构成对构造性数学及其哲学主张的否定。对此可以简要地分析如下:首先,构造性数学是一门全新的数学理论,它的逻辑基础、数学原则和哲学主张不可能完全等同于经典数学。因此,我们必须正视构造性数学的独特性。有什么理由说,选择实无穷就是对的,而选择潜无穷就是错的?又有什么理由说,选择经典逻辑就是科学的,选择构造性逻辑就是不科学的?我们没有超越实无穷和潜无穷的“绝对无穷观”,也没有超越经典逻辑和构造逻辑的“绝对逻辑”,我们没有终极的绝对的参照系。实际上,反对潜无穷只能是站在实无穷的立场上,反对构造性逻辑也只能是站在经典逻辑的立场上。但反过来也是可以的。因此,我们最后判别是非的立足点只能是实践——数学的内部实践和外部实践。不管是实无穷、潜无穷,也不管是经典逻辑、构造逻辑,只要以它们为基础能够建立起自相容的理论,并能够得到有效的应用,那么我们就要承认它们。说构造性数学显得繁琐和复杂,这也不是绝对的,如复分析中对毕卡大定理的构造性证明就显得更为直观,它的非构造性证明虽然较短,但却利用了一种称为椭圆模函数的较高深的数学工具,后来虽然也有了几种浅显的证明方法,可又都非常繁复,而相应的构造性证明却要更加自然,只用到了解析函数的基本性质。说构造性数学进展缓慢、难以成功,这并不意味着构造性数学不能成功。何况它在内容上的复杂和进展上的缓慢是有原因的:每一个构造性证明都比纯存在性证明为我们提供了更多更实用的信息。因此我们把构造性数学的复杂和缓慢看作是为了获得更多更实用的信息所必须付出的代价。应该承认,这种代价的付出是值得的。至于说到直觉主义数学排斥了一部分有价值的经典数学,我们说这并非直觉主义数学的过错,因为对部分经典数学的排斥并非逻辑地注定了的,谁又能保证这不是由于对经典数学的构造性改造太慢而造成的呢?如果是这样,今天被排斥的东西到明天就不会再排斥。如果排斥是必然的,则正说明构造性数学的独特性,说明数学具有构造性和非构造性两个不同侧面,说明这两种数学确实存在不可化归的关系。
也许会有许多人说,他们反对的只是直觉主义的哲学主张。在我们看来,直觉主义哲学除了它所主张的潜无穷观和构造性逻辑外,就是这么两点:一、存在必须被构造;二、原始直觉是数学的基础。关于潜无穷观和构造性逻辑前面刚刚谈过,不再重复。一些人对直觉主义者把可构造性作为数学理论可靠性的标准表示反对,前面我们也进行了反驳,并指出了可构造性是更强、更可靠的可靠性标准。至于提到“原始直觉是数学的基础”这一哲学主张,我们认为首先应该区别它的两种不同涵义:一是从数学发生学的角度讲,数学是产生于人类的原始直觉,原始直觉是产生数学的基础。二是从数学认识论的角度讲,数学的可靠性根源于人类的原始直觉,原始直觉是保证数学可靠性的基础。我们认为,直觉主义者在讲“原如直觉是数学的基础”时,包括了上述两层意思。不过我们认为,上述两层意思中,前者是可接受的(对此我们将另文专论),后者是错误的。原因正如波普尔所说:相信知识在发生学或心理学上是先验的,这是对的;但认为知识都能先验地正确,就大错特错了。源于人的直觉的数学,如果没有被逻辑地构造与证明,它就没有获得必要的可靠性。但联想到直觉主义者随时都在强调可构造性,因此他们在哲学上的一些错误并不会影响到其数学的可靠性。说直觉主义哲学大体上是可接受的,还有一个有力的理由,即在这种哲学主张的基础上而建立起的直觉主义数学,并未象经典数学那样一再地发生危机——出现悖论,它是自相容的。
美籍华人王浩先生曾认为,构造性数学是做的数学,非构造性数学是在的数学。对此,我国著名数学家胡世华先生给予了如下的解释和进一步的发挥:“数学的在是信息模式和结构的在;数学的做是信息加工。构造性数学的倾向是用数学取得的结果把结果构造出来,侧重于思维的构造性实践,非构造性数学的倾向是数学地理解问题和规律,建立数学模型,形成数学理论体系,追求科学思想”。(〔8〕第267页)我们认为,这些看法是比较客观的。但应进一步指明的是,构造性数学并非像许多人认为的那样,总是直接因袭标准的非构造性数学。事实上,构造性数学不是命中注定永远要靠坐吃经典数学这个老板来发展。这两类数学的关系是共生性,而非寄生性的。构造性数学的发展还不足百年,相信它在未来的发展中,会有一个又一个的重大突破。当然这已是后话了。
参考文献
〔1〕 康德:《未来形而上学导论》,商务印书馆1978年。
〔2〕 《中国大百科全书(数学)》有关条目。
〔3〕 莫斯托夫斯基:《数学基础研究三十年,华中工学院出版社,1983。
〔4〕 D.Bridges、R·Mines:“什么是构造数学?”《数学译林》1986年第4期。
〔5〕 徐利治:《数学方法论选讲》,华中工学院出版社,1983年。
〔6〕 外尔:“半个世纪的数学”载《数学史译文集》(续集),上海科技出版社,1985年。
〔7〕 克林:《元数学导论》上、下册,科学出版社1985年。
〔8〕 胡世华:“信息时代的数学”载《数学与文化》,北京大学出版社,1990年。
〔9〕 引自夏基松、郑毓信:《西方数学哲学》,人民出版社,1986年。